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The magnetic field of planets or stars is generated by the motion of a conducting fluid through a dynamo
instability. The saturation of the magnetic field occurs through the reaction of the Lorentz force on the flow. In
relation to this phenomenon, we study the effect of a magnetic field on a turbulent flow of liquid gallium. The
measurement of electric potential differences provides a signal related to the local velocity fluctuations. We
observe a reduction of velocity fluctuations at all frequencies in the spectrum when the magnetic field is
increased.
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Magnetic fields of planets and stars are created by the
dynamo instability, which converts part of the kinetic energy
of an electrically conducting fluid into electromagnetic en-
ergy. Recently, several groups succeeded in generating fluid
dynamos using liquid sodium flows �1–3�. The feedback of
the magnetic field on the flow through the Lorentz force
causes the saturation of this instability. This effect is quite
well understood in the Riga �3� and Karlsruhe �2� dynamos
in terms of mean-field magnetohydrodynamics or of the
change of the velocity profiles �3–6�. In these two cases, the
turbulence intensity is low and the turbulent motions are re-
stricted to small scales. In the case of the Von Karman so-
dium dynamo �1�, for example, the turbulent fluctuations are
present at all scales of the experiment. We are interested in
the detailed dynamical mechanism involved in this feedback
on the turbulent flow, which remains poorly understood. In
particular, it is not clear whether the magnetic field first in-
hibits the smallest turbulent eddies, i.e., the ones containing
the lowest amount of kinetic energy, as first assumed by
Batchelor �7�, or if it affects all scales of the flow. Several
experiments studied the influence of strong magnetic fields
on decaying turbulent flows of liquid metal �8–11�. Most of
them concern freely decaying turbulence and are performed
in a range of dimensionless parameters very far from the one
involved for weakly supercritical dynamos. Here we focus
on the braking effect of the magnetic field on a stationary
turbulent flow. A constant magnetic field of tunable ampli-
tude is applied to a gallium flow. The statistics of the velocity
field can be accessed through the measurement of electrical
potential differences in the metal flow. We report the de-
crease in the intensity of the velocity fluctuations at all fre-
quencies as the magnetic field is increased.

One liter of gallium fills a glass cylindrical cell, 12.5 cm
in diameter and 7 cm in height �Fig. 1�. A coil imposes a
constant vertical magnetic field that can be varied up to
1 kG. A propeller is positioned 3 cm off-axis and 3 cm
above the bottom of the vessel. Its radius is R=3.5 cm. The
propeller is rotated so that it ejects the fluid toward the bot-
tom of the cell. The off-centering of the propeller prevents
the fluid from rotating as a solid body. This generates a
highly fluctuating flow. Rotation frequencies f rot of the pro-
peller range from 2 to 7 Hz.

In the approximations of magnetohydrodynamics, the
magnetic field B follows the induction equation:

�B

�t
= � � �v � B� + ��B , �1�

where �= ��0��−1 is the magnetic diffusivity �� is the elec-
trical conductivity� and v is the flow velocity. For an incom-
pressible fluid, the latter is governed by the Navier-Stokes
equation with the Lorentz force,

�� �v

�t
+ �v · ��v� = − �p + ���v + j � B , �2�

where � is the kinematic viscosity, p is the pressure, j is the
electrical current density, and � is the density of the fluid.
Three dimensionless numbers can be defined: �i� the usual
hydrodynamic Reynolds number: Re=LV /� �V and L being
velocity and length scales�, �ii� the magnetic Reynolds num-
ber Rm=LV /�, which is the ratio of the induction term over
the magnetic diffusive term �Ohmic diffusion� in the induc-
tion equation, and �iii� the interaction parameter N, which
compares the Lorentz force j�B to the convective accelera-
tion in the Navier-Stokes equation. For an applied magnetic
field B0, the induced current is j���v�B0�, so that N
=�LB0

2 /�V.

*mberhanu@lps.ens.fr

Gallium

Cylindrical coil Vertical magnetic field

Propeller Gaussmeter difference probe
Potential

FIG. 1. Cross section of the experimental setup. A propeller is
placed off axis in a cylindrical cell filled with liquid gallium. The
vertical magnetic field is generated by a cylindrical coil and is
monitored with a gaussmeter. An electrical potential difference is
measured by a pair of copper electrodes.
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In the case of gallium, one has �=3.86�106 	−1 m−1,
�=3.11�10−7 m2 s−1, and �=6090 kg /m3.

In our experiment, the Reynolds number can be varied in
the range 5�104
Re
1.7�105 so that the flow is turbu-
lent. The magnetic Reynolds number is in the range 0.07

Rm
0.25. The interaction parameter can be rewritten N
=�B0

2 / �2�f rot�� by using Rf rot as a velocity scale.
Velocimetry in liquid metals can be achieved by measur-

ing the electromotive force that arises from the motion of the
metal in an applied magnetic field. Measurements of the
voltage between two electrodes, a few millimeters apart,
have been performed for more than 50 years. The magnetic
field can either be a large-scale field �11–13� or the localized
field of a small magnet �14,15�. We use the first configuration
in our experiment. The electrodes are located at the end of a
cylindrical rod plunging into the liquid metal �Fig. 1�. Each
one is made of a 5-mm-long copper wire, insulated except at
the very end, which is in electrical contact with the fluid.
They are separated by a 3.5-mm-wide gap.

In the approximations of magnetohydrodynamics, Ohm’s
law in a moving fluid is written j=��E+v�B�. In a quasi-
static regime, one can consider that � · j=0. With the choice
� ·A=0, the divergence of Ohm’s law yields

�� =  · B − �0v · j . �3�

The potentials � and A are defined by E=−��− �A
�t and  is

the vorticity of the flow. The order of magnitude of the right-
hand side terms of Eq. �3� are  ·B0�B0V / lK and �0v · j
�bV / l�. b is the order of magnitude of the magnetic field
induced from B0 by the fluid motion. lK�L Re−3/4 is the
Kolmogorov length �dissipative length scale of the velocity�
and l��LRm

−3/4 is the length scale of Ohmic dissipation of the
induced currents. L is chosen as the integral length scale of
the flow. In our experiment, Rm is low so b�B0 and the
second term on the right-hand side is negligible so that

�� = � · B0. �4�

Thus potential measurements provide a measurement of the
component of vorticity parallel to the applied field. Similarly
to the case of pressure, a direct measurement of � would be
nonlocal, because of the Laplacian operator. For length
scales larger than the separation l of the electrodes, the mea-
surement of potential differences gives the gradient of �. A
signal of order vB0 is obtained �one spatial integration of Eq.
�4��. Thus, we expect the potential difference measurements
to be related to the dynamics of the velocity fluctuations, but
a precise calibration of the probe is not straightforward. For
the fluctuations corresponding to length scales much smaller
than l, the difference between two decorrelated values of the
potential � is measured. We expect the statistics of the po-
tential difference to be the same as that of the potential itself.
In the framework of Kolmogorov’s theory of turbulence, the
Fourier spectrum of vorticity is supposed to behave as k1/3.
Because of the sweeping of velocity structures by the turbu-
lent flow or the Taylor hypothesis �when relevant �16��, one
gets directly a prediction for the frequency spectrum. We
expect the spectrum of the potential difference to behave as
f−5/3 for frequencies lower than a cutoff frequency fc
�V /2�l and as f−11/3 for higher frequencies.

For a magnetic field of about 50 G, a signal of a few
microvolts is measured. It increases with both the applied
field and the rotation frequency of the propeller. A time series
of the potential is displayed in Fig. 2 together with the cor-
responding temporal power spectrum. The qualitative behav-
ior of the spectrum is in agreement with the discussion of the
previous paragraph. For intermediate values of the frequen-
cies, starting from the rotation frequency of the propeller, the
spectrum decays following roughly a power law which ex-
ponent is close to − 5

3 . For frequencies larger than 40 Hz, a
steeper power-law decay is observed, with an exponent close
to − 11

3 . Beyond 100 Hz, the signal falls under the noise level.
This is consistent with a hydrodynamic interpretation of our
potential measurements. For lower driving speeds, the f−5/3

zone is not very visible, most likely because of the lower
value of the Reynolds number that may not develop a clear
inertial range. The quantitative behavior of the spectra de-
pends somewhat on the position and the orientation of the
probe, because of the inhomogeneity of the flow.

We evaluate quantitatively the amplitude of the fluctua-
tions of the potential difference �� by the standard deviation
��� of the recorded signal. As seen in Fig. 3, when the ap-
plied magnetic field is gradually increased, the amplitude of
�� first grows linearly with B0 and f rot. For larger values of
the magnetic field, a departure from the linear behavior in B0
is observed, which we ascribe to the effect of the Lorentz
force on the flow.

The potential difference is divided by B0 �constant during
a given measurement� and also by the width l of the probe.
This quantity v=�� /B0l is homogeneous to a velocity and is
related to the velocity fluctuations in the vicinity of the
probe. Although the link is not direct between velocity and
potential difference, for simplicity we call v �somewhat abu-
sively� “velocity” in the following. The standard deviation of
this velocity is nondimensionalized by Rf rot and is noted
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FIG. 2. �Color online� �a� Temporal signal measured with the
potential probe for a rotation frequency of propeller of 7 Hz under
a magnetic field of 738 G. �b� Corresponding power spectrum.
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�v*=�v /Rf rot in the following. Within the accuracy of our
measurements, it decreases linearly with the interaction pa-
rameter, as seen in Fig. 4. The decay of �v* can reach a
factor 2.

The obtained curves look similar to the potential measure-
ments at large scale performed by Steenbeck et al. �17�. They
recorded the potential produced by � effect at the border of a
dedicated device with sodium flow. In their experiment, the
average potential decreases with the applied field, and fol-
lows roughly a 1 /N decay law. Their measurements are in-
terpreted as a quenching of the � effect, corresponding to a
braking of the flow. This saturates the efficiency of the in-
duction processes and is responsible for the saturation of the
�-dynamo �18�. It supports the model of the � effect, where
the average electromotive force is written as �v�B	=�B0.
Here we observe directly the reduction of the turbulent ve-
locity fluctuations resulting from the magnetic braking of the
flow.

One open question on the spectral behavior of the mag-
netic braking phenomenon is whether it acts on a privileged
scale. In particular, one could expect the braking to be more
efficient at the smallest scales of the flow and therefore to
damp preferentially the highest frequencies of the spectrum.
Indeed, following Batchelor �7�, a scale � would be damped
if the volumic kinetic energy 1

2�v�
2 at this scale is below the

volumic magnetic energy 1
2B0

2 /�0. The braking effect of the

magnetic field could then be modeled as an enhanced dissi-
pation. To answer this question, we compare the spectra of
�� /B0 for two values of the applied magnetic field at a given
frequency f rot of the propeller �Fig. 5�. The spectrum corre-
sponding to the highest B0 is below the other one, but no
relative variation in the damping is observed over the fre-
quencies. The two spectra can be obtained one from another
by a simple scaling factor, which is the ratio of the two
squared standard deviations �v*

2 . The magnetic braking is
performed similarly at all scales in the present range of di-
mensionless parameters.

Several authors �8–11� studied the influence of a magnetic
field on a flow both experimentally and numerically. For de-
caying turbulence, they observed a faster damping of the
velocity field for large values of the interaction parameter N.
This occurs simultaneously with a bidimensionalization of
the flow. In our experiment, no evolution is observed toward
an f−3 decay of the spectrum, expected for two-dimensional
turbulence. One difference may be due to the continuous
forcing in our experiment but also to the different values of
N and Rm. In this case, the large-scale eddy turnover time
may be lower than the decay time of the velocity field via the
Lorentz force for moderate values of N. The mechanical en-
ergy injection �0��V3 /L should be compared to the power
of the Lorentz force. The latter is identified with the dissipa-
tion by the Joule effect j ·E��V2B0

2. The ratio of the two is
N, which takes values lower than 1 in our case. The dissipa-
tion of the kinetic energy is thus done primarily via the tur-
bulent cascade at N
1. The current density is of order j
��V�B0, so that the Lorentz force is �B0

2V. Thus we can
build a braking time �m=� /�B0

2, which must be compared to
the eddy turnover time �h� L

v —after which the velocity field
is decorrelated. Once again, for N smaller than unity, one has
�h /�m=N
1, which means that the magnetic field does not
have enough time to affect the structure of the flow and to
make it anisotropic. Consequently, in the range of parameters
of our experiment and also for the saturation of the dynamo
effect, the application of a magnetic field to a turbulent flow
brings an additional braking term, without changing the
spectral behavior of velocity fluctuations. On the contrary,
for N�1, a variation of the slope of the velocity spectrum
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FIG. 3. �Color online� Standard deviation of the fluctuations of
the potential difference divided by the rotation frequency of the
propeller versus applied magnetic field.

0 0.1 0.2 0.3 0.4 0.5
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

N

σ v
*

f
rot

=2 Hz

f
rot

= 3 Hz

f
rot

= 4 Hz

f
rot

=5 Hz

FIG. 4. �Color online� Standard deviation of dimensionless ve-
locity fluctuations versus interaction parameter N.
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FIG. 5. �Color online� Comparison between power spectra of
velocity for a rotation frequency of 5 Hz for two different values of
the external magnetic field. Inset: ratio between the two power
spectrum densities.
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with the applied field is expected, as observed by Eckert
et al. �11�. The total dissipation of the flow increases with the
magnetic field because of Joule dissipation. A smaller part of
the injected power is available for the turbulent cascade.
Nevertheless, it neither changes much of its dynamics nor
breaks its scale invariance. An efficiency factor F
1 de-
pending on the interaction parameter can be introduced to
estimate the effective kinetic dissipation rate. From the usual
arguments of Kolmogorov’s 1941 theory, the velocity spec-
trum can then be written E�k���V3L−1F�N��2/3k−5/3. Conse-
quently when the magnetic field is increased, the velocity
spectrum preserves its shape, but its amplitude decreases as
F�N�2/3.

In summary, we observed the influence of the Lorentz
force on a turbulent flow of gallium through measurements
of electrical potential differences. A strong reduction of the
turbulent fluctuations is evidenced as the applied magnetic
field is increased. In the range of interaction parameter and
magnetic Reynolds number corresponding to our measure-
ments, the observed spectra show that the dynamics of tur-
bulence is affected by the presence of the magnetic field only
through a scaling efficiency factor.

We acknowledge stimulating discussions with Sébastien
Aumaître, François Pétrélis and Claudio Falcón.
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